3.5.76 \(\int \frac {1}{x^3 (d+e x) \sqrt {a d e+(c d^2+a e^2) x+c d e x^2}} \, dx\) [476]

Optimal. Leaf size=329 \[ -\frac {2 e (a e+c d x)}{d \left (c d^2-a e^2\right ) x^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}-\frac {\left (c d^2-5 a e^2\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{2 a d^2 e \left (c d^2-a e^2\right ) x^2}+\frac {\left (3 c d^2-5 a e^2\right ) \left (c d^2+3 a e^2\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 a^2 d^3 e^2 \left (c d^2-a e^2\right ) x}-\frac {3 \left (c^2 d^4+2 a c d^2 e^2+5 a^2 e^4\right ) \tanh ^{-1}\left (\frac {2 a d e+\left (c d^2+a e^2\right ) x}{2 \sqrt {a} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{8 a^{5/2} d^{7/2} e^{5/2}} \]

[Out]

-3/8*(5*a^2*e^4+2*a*c*d^2*e^2+c^2*d^4)*arctanh(1/2*(2*a*d*e+(a*e^2+c*d^2)*x)/a^(1/2)/d^(1/2)/e^(1/2)/(a*d*e+(a
*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/a^(5/2)/d^(7/2)/e^(5/2)-2*e*(c*d*x+a*e)/d/(-a*e^2+c*d^2)/x^2/(a*d*e+(a*e^2+c*d
^2)*x+c*d*e*x^2)^(1/2)-1/2*(-5*a*e^2+c*d^2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/a/d^2/e/(-a*e^2+c*d^2)/x^2
+1/4*(-5*a*e^2+3*c*d^2)*(3*a*e^2+c*d^2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/a^2/d^3/e^2/(-a*e^2+c*d^2)/x

________________________________________________________________________________________

Rubi [A]
time = 0.33, antiderivative size = 329, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 40, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.150, Rules used = {865, 836, 848, 820, 738, 212} \begin {gather*} \frac {\left (3 c d^2-5 a e^2\right ) \left (3 a e^2+c d^2\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{4 a^2 d^3 e^2 x \left (c d^2-a e^2\right )}-\frac {3 \left (5 a^2 e^4+2 a c d^2 e^2+c^2 d^4\right ) \tanh ^{-1}\left (\frac {x \left (a e^2+c d^2\right )+2 a d e}{2 \sqrt {a} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{8 a^{5/2} d^{7/2} e^{5/2}}-\frac {\left (c d^2-5 a e^2\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{2 a d^2 e x^2 \left (c d^2-a e^2\right )}-\frac {2 e (a e+c d x)}{d x^2 \left (c d^2-a e^2\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(x^3*(d + e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]),x]

[Out]

(-2*e*(a*e + c*d*x))/(d*(c*d^2 - a*e^2)*x^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]) - ((c*d^2 - 5*a*e^2)*
Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(2*a*d^2*e*(c*d^2 - a*e^2)*x^2) + ((3*c*d^2 - 5*a*e^2)*(c*d^2 + 3
*a*e^2)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(4*a^2*d^3*e^2*(c*d^2 - a*e^2)*x) - (3*(c^2*d^4 + 2*a*c*d
^2*e^2 + 5*a^2*e^4)*ArcTanh[(2*a*d*e + (c*d^2 + a*e^2)*x)/(2*Sqrt[a]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e
^2)*x + c*d*e*x^2])])/(8*a^(5/2)*d^(7/2)*e^(5/2))

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 738

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 820

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[(-(e*f - d*g))*(d + e*x)^(m + 1)*((a + b*x + c*x^2)^(p + 1)/(2*(p + 1)*(c*d^2 - b*d*e + a*e^2))), x] - Dist[
(b*(e*f + d*g) - 2*(c*d*f + a*e*g))/(2*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x]
, x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && EqQ[S
implify[m + 2*p + 3], 0]

Rule 836

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp
[(d + e*x)^(m + 1)*(f*(b*c*d - b^2*e + 2*a*c*e) - a*g*(2*c*d - b*e) + c*(f*(2*c*d - b*e) - g*(b*d - 2*a*e))*x)
*((a + b*x + c*x^2)^(p + 1)/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2))), x] + Dist[1/((p + 1)*(b^2 - 4*a*
c)*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^m*(a + b*x + c*x^2)^(p + 1)*Simp[f*(b*c*d*e*(2*p - m + 2) + b^2*e^2
*(p + m + 2) - 2*c^2*d^2*(2*p + 3) - 2*a*c*e^2*(m + 2*p + 3)) - g*(a*e*(b*e - 2*c*d*m + b*e*m) - b*d*(3*c*d -
b*e + 2*c*d*p - b*e*p)) + c*e*(g*(b*d - 2*a*e) - f*(2*c*d - b*e))*(m + 2*p + 4)*x, x], x], x] /; FreeQ[{a, b,
c, d, e, f, g, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[p, -1] && (IntegerQ[m] ||
 IntegerQ[p] || IntegersQ[2*m, 2*p])

Rule 848

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[(e*f - d*g)*(d + e*x)^(m + 1)*((a + b*x + c*x^2)^(p + 1)/((m + 1)*(c*d^2 - b*d*e + a*e^2))), x] + Dist[1/((m
 + 1)*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p*Simp[(c*d*f - f*b*e + a*e*g)*(m + 1)
 + b*(d*g - e*f)*(p + 1) - c*(e*f - d*g)*(m + 2*p + 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] &&
NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[m, -1] && (IntegerQ[m] || IntegerQ[p] || IntegersQ
[2*m, 2*p])

Rule 865

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Int[((f + g*x)^n*(a + b*x + c*x^2)^(m + p))/(a/d + c*(x/e))^m, x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] &&
NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && ILtQ[m, 0] && In
tegerQ[n] && (LtQ[n, 0] || GtQ[p, 0])

Rubi steps

\begin {align*} \int \frac {1}{x^3 (d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx &=\int \frac {a e+c d x}{x^3 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx\\ &=-\frac {2 e (a e+c d x)}{d \left (c d^2-a e^2\right ) x^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}-\frac {2 \int \frac {-\frac {1}{2} a e \left (c d^2-5 a e^2\right ) \left (c d^2-a e^2\right )+2 a c d e^2 \left (c d^2-a e^2\right ) x}{x^3 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{a d e \left (c d^2-a e^2\right )^2}\\ &=-\frac {2 e (a e+c d x)}{d \left (c d^2-a e^2\right ) x^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}-\frac {\left (c d^2-5 a e^2\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{2 a d^2 e \left (c d^2-a e^2\right ) x^2}+\frac {\int \frac {-\frac {1}{4} a e \left (3 c d^2-5 a e^2\right ) \left (c d^2-a e^2\right ) \left (c d^2+3 a e^2\right )-\frac {1}{2} a c d e^2 \left (c d^2-5 a e^2\right ) \left (c d^2-a e^2\right ) x}{x^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{a^2 d^2 e^2 \left (c d^2-a e^2\right )^2}\\ &=-\frac {2 e (a e+c d x)}{d \left (c d^2-a e^2\right ) x^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}-\frac {\left (c d^2-5 a e^2\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{2 a d^2 e \left (c d^2-a e^2\right ) x^2}+\frac {\left (3 c d^2-5 a e^2\right ) \left (c d^2+3 a e^2\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 a^2 d^3 e^2 \left (c d^2-a e^2\right ) x}+\frac {\left (3 \left (c^2 d^4+2 a c d^2 e^2+5 a^2 e^4\right )\right ) \int \frac {1}{x \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{8 a^2 d^3 e^2}\\ &=-\frac {2 e (a e+c d x)}{d \left (c d^2-a e^2\right ) x^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}-\frac {\left (c d^2-5 a e^2\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{2 a d^2 e \left (c d^2-a e^2\right ) x^2}+\frac {\left (3 c d^2-5 a e^2\right ) \left (c d^2+3 a e^2\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 a^2 d^3 e^2 \left (c d^2-a e^2\right ) x}-\frac {\left (3 \left (c^2 d^4+2 a c d^2 e^2+5 a^2 e^4\right )\right ) \text {Subst}\left (\int \frac {1}{4 a d e-x^2} \, dx,x,\frac {2 a d e-\left (-c d^2-a e^2\right ) x}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{4 a^2 d^3 e^2}\\ &=-\frac {2 e (a e+c d x)}{d \left (c d^2-a e^2\right ) x^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}-\frac {\left (c d^2-5 a e^2\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{2 a d^2 e \left (c d^2-a e^2\right ) x^2}+\frac {\left (3 c d^2-5 a e^2\right ) \left (c d^2+3 a e^2\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 a^2 d^3 e^2 \left (c d^2-a e^2\right ) x}-\frac {3 \left (c^2 d^4+2 a c d^2 e^2+5 a^2 e^4\right ) \tanh ^{-1}\left (\frac {2 a d e+\left (c d^2+a e^2\right ) x}{2 \sqrt {a} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{8 a^{5/2} d^{7/2} e^{5/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.45, size = 283, normalized size = 0.86 \begin {gather*} \frac {\sqrt {a} \sqrt {d} \sqrt {e} \left (3 c^3 d^5 x^2 (d+e x)+a^3 e^4 \left (2 d^2-5 d e x-15 e^2 x^2\right )+a c^2 d^3 e x \left (d^2+5 d e x+4 e^2 x^2\right )-a^2 c d e^2 \left (2 d^3-4 d^2 e x+d e^2 x^2+15 e^3 x^3\right )\right )-3 \left (c^3 d^6+a c^2 d^4 e^2+3 a^2 c d^2 e^4-5 a^3 e^6\right ) x^2 \sqrt {a e+c d x} \sqrt {d+e x} \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a e+c d x}}{\sqrt {a} \sqrt {e} \sqrt {d+e x}}\right )}{4 a^{5/2} d^{7/2} e^{5/2} \left (c d^2-a e^2\right ) x^2 \sqrt {(a e+c d x) (d+e x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(x^3*(d + e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]),x]

[Out]

(Sqrt[a]*Sqrt[d]*Sqrt[e]*(3*c^3*d^5*x^2*(d + e*x) + a^3*e^4*(2*d^2 - 5*d*e*x - 15*e^2*x^2) + a*c^2*d^3*e*x*(d^
2 + 5*d*e*x + 4*e^2*x^2) - a^2*c*d*e^2*(2*d^3 - 4*d^2*e*x + d*e^2*x^2 + 15*e^3*x^3)) - 3*(c^3*d^6 + a*c^2*d^4*
e^2 + 3*a^2*c*d^2*e^4 - 5*a^3*e^6)*x^2*Sqrt[a*e + c*d*x]*Sqrt[d + e*x]*ArcTanh[(Sqrt[d]*Sqrt[a*e + c*d*x])/(Sq
rt[a]*Sqrt[e]*Sqrt[d + e*x])])/(4*a^(5/2)*d^(7/2)*e^(5/2)*(c*d^2 - a*e^2)*x^2*Sqrt[(a*e + c*d*x)*(d + e*x)])

________________________________________________________________________________________

Maple [A]
time = 0.08, size = 545, normalized size = 1.66

method result size
default \(\frac {2 e^{2} \sqrt {c d e \left (x +\frac {d}{e}\right )^{2}+\left (a \,e^{2}-c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}}{d^{3} \left (a \,e^{2}-c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}+\frac {-\frac {\sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d e \,x^{2}}}{2 a d e \,x^{2}}-\frac {3 \left (a \,e^{2}+c \,d^{2}\right ) \left (-\frac {\sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d e \,x^{2}}}{a d e x}+\frac {\left (a \,e^{2}+c \,d^{2}\right ) \ln \left (\frac {2 a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +2 \sqrt {a d e}\, \sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d e \,x^{2}}}{x}\right )}{2 a d e \sqrt {a d e}}\right )}{4 a d e}+\frac {c \ln \left (\frac {2 a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +2 \sqrt {a d e}\, \sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d e \,x^{2}}}{x}\right )}{2 a \sqrt {a d e}}}{d}-\frac {e \left (-\frac {\sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d e \,x^{2}}}{a d e x}+\frac {\left (a \,e^{2}+c \,d^{2}\right ) \ln \left (\frac {2 a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +2 \sqrt {a d e}\, \sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d e \,x^{2}}}{x}\right )}{2 a d e \sqrt {a d e}}\right )}{d^{2}}-\frac {e^{2} \ln \left (\frac {2 a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +2 \sqrt {a d e}\, \sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d e \,x^{2}}}{x}\right )}{d^{3} \sqrt {a d e}}\) \(545\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^3/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x,method=_RETURNVERBOSE)

[Out]

2*e^2/d^3/(a*e^2-c*d^2)/(x+d/e)*(c*d*e*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^(1/2)+1/d*(-1/2/a/d/e/x^2*(a*d*e+(a*e^
2+c*d^2)*x+c*d*e*x^2)^(1/2)-3/4*(a*e^2+c*d^2)/a/d/e*(-1/a/d/e/x*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+1/2*(a
*e^2+c*d^2)/a/d/e/(a*d*e)^(1/2)*ln((2*a*d*e+(a*e^2+c*d^2)*x+2*(a*d*e)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^
(1/2))/x))+1/2*c/a/(a*d*e)^(1/2)*ln((2*a*d*e+(a*e^2+c*d^2)*x+2*(a*d*e)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)
^(1/2))/x))-e/d^2*(-1/a/d/e/x*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+1/2*(a*e^2+c*d^2)/a/d/e/(a*d*e)^(1/2)*ln
((2*a*d*e+(a*e^2+c*d^2)*x+2*(a*d*e)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/x))-e^2/d^3/(a*d*e)^(1/2)*l
n((2*a*d*e+(a*e^2+c*d^2)*x+2*(a*d*e)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(c*d*x^2*e + a*d*e + (c*d^2 + a*e^2)*x)*(x*e + d)*x^3), x)

________________________________________________________________________________________

Fricas [A]
time = 8.39, size = 799, normalized size = 2.43 \begin {gather*} \left [\frac {3 \, {\left (c^{3} d^{6} x^{3} e + c^{3} d^{7} x^{2} + a c^{2} d^{4} x^{3} e^{3} + a c^{2} d^{5} x^{2} e^{2} + 3 \, a^{2} c d^{2} x^{3} e^{5} + 3 \, a^{2} c d^{3} x^{2} e^{4} - 5 \, a^{3} x^{3} e^{7} - 5 \, a^{3} d x^{2} e^{6}\right )} \sqrt {a d} e^{\frac {1}{2}} \log \left (\frac {c^{2} d^{4} x^{2} + 8 \, a c d^{3} x e + a^{2} x^{2} e^{4} + 8 \, a^{2} d x e^{3} - 4 \, {\left (c d^{2} x + a x e^{2} + 2 \, a d e\right )} \sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e} \sqrt {a d} e^{\frac {1}{2}} + 2 \, {\left (3 \, a c d^{2} x^{2} + 4 \, a^{2} d^{2}\right )} e^{2}}{x^{2}}\right ) + 4 \, {\left (3 \, a c^{2} d^{6} x e + 2 \, a^{2} c d^{4} x e^{3} - 15 \, a^{3} d x^{2} e^{6} - 5 \, a^{3} d^{2} x e^{5} + 2 \, {\left (2 \, a^{2} c d^{3} x^{2} + a^{3} d^{3}\right )} e^{4} + {\left (3 \, a c^{2} d^{5} x^{2} - 2 \, a^{2} c d^{5}\right )} e^{2}\right )} \sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e}}{16 \, {\left (a^{3} c d^{6} x^{3} e^{4} + a^{3} c d^{7} x^{2} e^{3} - a^{4} d^{4} x^{3} e^{6} - a^{4} d^{5} x^{2} e^{5}\right )}}, \frac {3 \, {\left (c^{3} d^{6} x^{3} e + c^{3} d^{7} x^{2} + a c^{2} d^{4} x^{3} e^{3} + a c^{2} d^{5} x^{2} e^{2} + 3 \, a^{2} c d^{2} x^{3} e^{5} + 3 \, a^{2} c d^{3} x^{2} e^{4} - 5 \, a^{3} x^{3} e^{7} - 5 \, a^{3} d x^{2} e^{6}\right )} \sqrt {-a d e} \arctan \left (\frac {{\left (c d^{2} x + a x e^{2} + 2 \, a d e\right )} \sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e} \sqrt {-a d e}}{2 \, {\left (a c d^{3} x e + a^{2} d x e^{3} + {\left (a c d^{2} x^{2} + a^{2} d^{2}\right )} e^{2}\right )}}\right ) + 2 \, {\left (3 \, a c^{2} d^{6} x e + 2 \, a^{2} c d^{4} x e^{3} - 15 \, a^{3} d x^{2} e^{6} - 5 \, a^{3} d^{2} x e^{5} + 2 \, {\left (2 \, a^{2} c d^{3} x^{2} + a^{3} d^{3}\right )} e^{4} + {\left (3 \, a c^{2} d^{5} x^{2} - 2 \, a^{2} c d^{5}\right )} e^{2}\right )} \sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e}}{8 \, {\left (a^{3} c d^{6} x^{3} e^{4} + a^{3} c d^{7} x^{2} e^{3} - a^{4} d^{4} x^{3} e^{6} - a^{4} d^{5} x^{2} e^{5}\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="fricas")

[Out]

[1/16*(3*(c^3*d^6*x^3*e + c^3*d^7*x^2 + a*c^2*d^4*x^3*e^3 + a*c^2*d^5*x^2*e^2 + 3*a^2*c*d^2*x^3*e^5 + 3*a^2*c*
d^3*x^2*e^4 - 5*a^3*x^3*e^7 - 5*a^3*d*x^2*e^6)*sqrt(a*d)*e^(1/2)*log((c^2*d^4*x^2 + 8*a*c*d^3*x*e + a^2*x^2*e^
4 + 8*a^2*d*x*e^3 - 4*(c*d^2*x + a*x*e^2 + 2*a*d*e)*sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)*e)*sqrt(a*d)*e^(1
/2) + 2*(3*a*c*d^2*x^2 + 4*a^2*d^2)*e^2)/x^2) + 4*(3*a*c^2*d^6*x*e + 2*a^2*c*d^4*x*e^3 - 15*a^3*d*x^2*e^6 - 5*
a^3*d^2*x*e^5 + 2*(2*a^2*c*d^3*x^2 + a^3*d^3)*e^4 + (3*a*c^2*d^5*x^2 - 2*a^2*c*d^5)*e^2)*sqrt(c*d^2*x + a*x*e^
2 + (c*d*x^2 + a*d)*e))/(a^3*c*d^6*x^3*e^4 + a^3*c*d^7*x^2*e^3 - a^4*d^4*x^3*e^6 - a^4*d^5*x^2*e^5), 1/8*(3*(c
^3*d^6*x^3*e + c^3*d^7*x^2 + a*c^2*d^4*x^3*e^3 + a*c^2*d^5*x^2*e^2 + 3*a^2*c*d^2*x^3*e^5 + 3*a^2*c*d^3*x^2*e^4
 - 5*a^3*x^3*e^7 - 5*a^3*d*x^2*e^6)*sqrt(-a*d*e)*arctan(1/2*(c*d^2*x + a*x*e^2 + 2*a*d*e)*sqrt(c*d^2*x + a*x*e
^2 + (c*d*x^2 + a*d)*e)*sqrt(-a*d*e)/(a*c*d^3*x*e + a^2*d*x*e^3 + (a*c*d^2*x^2 + a^2*d^2)*e^2)) + 2*(3*a*c^2*d
^6*x*e + 2*a^2*c*d^4*x*e^3 - 15*a^3*d*x^2*e^6 - 5*a^3*d^2*x*e^5 + 2*(2*a^2*c*d^3*x^2 + a^3*d^3)*e^4 + (3*a*c^2
*d^5*x^2 - 2*a^2*c*d^5)*e^2)*sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)*e))/(a^3*c*d^6*x^3*e^4 + a^3*c*d^7*x^2*e
^3 - a^4*d^4*x^3*e^6 - a^4*d^5*x^2*e^5)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{x^{3} \sqrt {\left (d + e x\right ) \left (a e + c d x\right )} \left (d + e x\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**3/(e*x+d)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2),x)

[Out]

Integral(1/(x**3*sqrt((d + e*x)*(a*e + c*d*x))*(d + e*x)), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Unable to divide, perhaps due to rounding error%%%{%%%{1,[0,3,9]%%%},[2,4]%%%}+%%%{%%%{-4,[1,5,7]%%%},[2,3]
%%%}+%%%{%%

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {1}{x^3\,\left (d+e\,x\right )\,\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^3*(d + e*x)*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)),x)

[Out]

int(1/(x^3*(d + e*x)*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)), x)

________________________________________________________________________________________